Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 ZS1YU7uYvSIcP7OC0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-25 17:10:25.882140+00:00 1
2 v2l1b5QID196kkyz0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-25 17:10:25.873752+00:00 1
1 wr8sxTFNLLkn1hcv0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-25 17:10:25.784875+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-25 17:10:23 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7f2297958790>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-25 17:10:23 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-25 17:10:23 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-25 17:10:23 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 wr8sxTFNLLkn1hcv0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-25 17:10:25.784875+00:00 1
2 v2l1b5QID196kkyz0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-25 17:10:25.873752+00:00 1
3 ZS1YU7uYvSIcP7OC0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-25 17:10:25.882140+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 v2l1b5QID196kkyz0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-25 17:10:25.873752+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
11 1AhfyCrJENsJ0000 None True Efficiency IgE result IgA IgM Lactiferous duct... None None notebook None None None None None 2024-10-25 17:10:27.519316+00:00 1
38 OaMyEJ9bLx4P0000 None True Midbrain intestinal intestine Prostate gland T... None None notebook None None None None None 2024-10-25 17:10:27.521008+00:00 1
66 SnX6DVvQRBPz0000 None True Intestine Border cells of organ of Corti rank ... None None notebook None None None None None 2024-10-25 17:10:27.522778+00:00 1
93 dP74W74DJ9U60000 None True Ige Midbrain intestine IgG4 Prostate gland Mus... None None notebook None None None None None 2024-10-25 17:10:27.527480+00:00 1
94 dY0XmwIU39Qy0000 None True Intestine result visualize Liver Spleen candid... None None notebook None None None None None 2024-10-25 17:10:27.527540+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 wr8sxTFNLLkn1hcv0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-25 17:10:25.784875+00:00 1
2 v2l1b5QID196kkyz0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-25 17:10:25.873752+00:00 1
3 ZS1YU7uYvSIcP7OC0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-25 17:10:25.882140+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 wr8sxTFNLLkn1hcv0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-25 17:10:25.784875+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 v2l1b5QID196kkyz0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-25 17:10:25.873752+00:00 1
3 ZS1YU7uYvSIcP7OC0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-25 17:10:25.882140+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 wr8sxTFNLLkn1hcv0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-25 17:10:25.784875+00:00 1
3 ZS1YU7uYvSIcP7OC0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-25 17:10:25.882140+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 ZS1YU7uYvSIcP7OC0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-25 17:10:25.882140+00:00 1
2 v2l1b5QID196kkyz0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-25 17:10:25.873752+00:00 1
1 wr8sxTFNLLkn1hcv0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-25 17:10:25.784875+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
8 WklbWKwv9Yba0000 None True Ige IgA research Satellite glial cells IgG Pro... None None notebook None None None None None 2024-10-25 17:10:27.519127+00:00 1
14 FyB5tNr19BAq0000 None True Cluster candidate IgM Place cells rank IgA res... None None notebook None None None None None 2024-10-25 17:10:27.519503+00:00 1
23 zcc85Nk7nx7m0000 None True Research Smooth muscle cell Inner phalangeal c... None None notebook None None None None None 2024-10-25 17:10:27.520064+00:00 1
25 fkNYyCv8SIkp0000 None True Research classify Prostate gland. None None notebook None None None None None 2024-10-25 17:10:27.520191+00:00 1
26 TjA0y3Tp6fV90000 None True Pituitary Gland research Liver Liver result ca... None None notebook None None None None None 2024-10-25 17:10:27.520253+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
8 WklbWKwv9Yba0000 None True Ige IgA research Satellite glial cells IgG Pro... None None notebook None None None None None 2024-10-25 17:10:27.519127+00:00 1
14 FyB5tNr19BAq0000 None True Cluster candidate IgM Place cells rank IgA res... None None notebook None None None None None 2024-10-25 17:10:27.519503+00:00 1
23 zcc85Nk7nx7m0000 None True Research Smooth muscle cell Inner phalangeal c... None None notebook None None None None None 2024-10-25 17:10:27.520064+00:00 1
25 fkNYyCv8SIkp0000 None True Research classify Prostate gland. None None notebook None None None None None 2024-10-25 17:10:27.520191+00:00 1
26 TjA0y3Tp6fV90000 None True Pituitary Gland research Liver Liver result ca... None None notebook None None None None None 2024-10-25 17:10:27.520253+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
23 zcc85Nk7nx7m0000 None True Research Smooth muscle cell Inner phalangeal c... None None notebook None None None None None 2024-10-25 17:10:27.520064+00:00 1
25 fkNYyCv8SIkp0000 None True Research classify Prostate gland. None None notebook None None None None None 2024-10-25 17:10:27.520191+00:00 1
36 9ETMKPTfdsn70000 None True Research Inner phalangeal cells of organ of Co... None None notebook None None None None None 2024-10-25 17:10:27.520882+00:00 1
120 aZQitfF4niAc0000 None True Research Place cells candidate IgM. None None notebook None None None None None 2024-10-25 17:10:27.529105+00:00 1
125 x7mLPKIAZvlc0000 None True Research IgG3 visualize Smooth muscle cell Mus... None None notebook None None None None None 2024-10-25 17:10:27.529426+00:00 1
159 Cbo2ZONmptJb0000 None True Research IgA IgG4 Prostate gland Spleen research. None None notebook None None None None None 2024-10-25 17:10:27.534124+00:00 1
208 O2QAf84uuyst0000 None True Research Prostate gland IgG3 cluster IgE Inner... None None notebook None None None None None 2024-10-25 17:10:27.539739+00:00 1
296 YlkPjUrt4PmM0000 None True Research IgD Boundary cells Muscles of breathi... None None notebook None None None None None 2024-10-25 17:10:27.608777+00:00 1
387 5YsSYYcOXFNL0000 None True Research Satellite glial cells Midbrain IgA IgA. None None notebook None None None None None 2024-10-25 17:10:27.616869+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 wr8sxTFNLLkn1hcv0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-25 17:10:25.784875+00:00 1
3 ZS1YU7uYvSIcP7OC0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-25 17:10:25.882140+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 v2l1b5QID196kkyz0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-25 17:10:25.873752+00:00 1
3 ZS1YU7uYvSIcP7OC0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-25 17:10:25.882140+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries